Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(10): e1011691, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37847677

RESUMO

Even though gammaherpesvirus and parasitic infections are endemic in parts of the world, there is a lack of understanding about the outcome of coinfection. In humans, coinfections usually occur sequentially, with fluctuating order and timing in different hosts. However, experimental studies in mice generally do not address the variables of order and timing of coinfections. We sought to examine the variable of coinfection order in a system of gammaherpesvirus-helminth coinfection. Our previous work demonstrated that infection with the intestinal parasite, Heligmosomoides polygyrus, induced transient reactivation from latency of murine gammaherpesvirus-68 (MHV68). In this report, we reverse the order of coinfection, infecting with H. polygyrus first, followed by MHV68, and examined the effects of preexisting parasite infection on MHV68 acute and latent infection. We found that preexisting parasite infection increased the propensity of MHV68 to reactivate from latency. However, when we examined the mechanism for reactivation, we found that preexisting parasite infection increased the ability of MHV68 to reactivate in a vitamin A dependent manner, a distinct mechanism to what we found previously with parasite-induced reactivation after latency establishment. We determined that H. polygyrus infection increased both acute and latent MHV68 infection in a population of tissue resident macrophages, called large peritoneal macrophages. We demonstrate that this population of macrophages and vitamin A are required for increased acute and latent infection during parasite coinfection.


Assuntos
Coinfecção , Gammaherpesvirinae , Helmintos , Infecções por Herpesviridae , Infecção Latente , Doenças Parasitárias , Humanos , Animais , Camundongos , Ativação Viral , Latência Viral/fisiologia , Vitamina A , Linfócitos B , Infecções por Herpesviridae/complicações , Gammaherpesvirinae/fisiologia , Macrófagos , Camundongos Endogâmicos C57BL
2.
Elife ; 122023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37159507

RESUMO

Peristaltic movement of the intestine propels food down the length of the gastrointestinal tract to promote nutrient absorption. Interactions between intestinal macrophages and the enteric nervous system regulate gastrointestinal motility, yet we have an incomplete understanding of the molecular mediators of this crosstalk. Here, we identify complement component 1q (C1q) as a macrophage product that regulates gut motility. Macrophages were the predominant source of C1q in the mouse intestine and most extraintestinal tissues. Although C1q mediates the complement-mediated killing of bacteria in the bloodstream, we found that C1q was not essential for the immune defense of the intestine. Instead, C1q-expressing macrophages were located in the intestinal submucosal and myenteric plexuses where they were closely associated with enteric neurons and expressed surface markers characteristic of nerve-adjacent macrophages in other tissues. Mice with a macrophage-specific deletion of C1qa showed changes in enteric neuronal gene expression, increased neurogenic activity of peristalsis, and accelerated intestinal transit. Our findings identify C1q as a key regulator of gastrointestinal motility and provide enhanced insight into the crosstalk between macrophages and the enteric nervous system.


Assuntos
Complemento C1q , Sistema Nervoso Entérico , Camundongos , Animais , Complemento C1q/metabolismo , Motilidade Gastrointestinal/fisiologia , Macrófagos/metabolismo , Trato Gastrointestinal
3.
Science ; 374(6568): eabe6723, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34735226

RESUMO

A diverse group of antimicrobial proteins (AMPs) helps protect the mammalian intestine from varied microbial challenges. We show that small proline-rich protein 2A (SPRR2A) is an intestinal antibacterial protein that is phylogenetically unrelated to previously discovered mammalian AMPs. In this study, SPRR2A was expressed in Paneth cells and goblet cells and selectively killed Gram-positive bacteria by disrupting their membranes. SPRR2A shaped intestinal microbiota composition, restricted bacterial association with the intestinal surface, and protected against Listeria monocytogenes infection. SPRR2A differed from other intestinal AMPs in that it was induced by type 2 cytokines produced during helminth infection. Moreover, SPRR2A protected against helminth-induced bacterial invasion of intestinal tissue. Thus, SPRR2A is a distinctive AMP triggered by type 2 immunity that protects the intestinal barrier during helminth infection.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Microbioma Gastrointestinal , Bactérias Gram-Positivas/fisiologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Nematospiroides dubius , Infecções por Strongylida/imunologia , Animais , Carga Bacteriana , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Proteínas Ricas em Prolina do Estrato Córneo/genética , Citocinas/metabolismo , Suscetibilidade a Doenças , Células Caliciformes/metabolismo , Humanos , Imunidade Inata , Mucosa Intestinal/microbiologia , Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Camundongos , Viabilidade Microbiana , Celulas de Paneth/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Infecções por Strongylida/metabolismo , Infecções por Strongylida/microbiologia
4.
Nat Immunol ; 21(4): 422-433, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32205880

RESUMO

A20 is an anti-inflammatory protein that is strongly linked to human disease. Here, we find that mice expressing three distinct targeted mutations of A20's zinc finger 7 (ZF7) ubiquitin-binding motif uniformly developed digit arthritis with features common to psoriatic arthritis, while mice expressing point mutations in A20's OTU or ZF4 motifs did not exhibit this phenotype. Arthritis in A20ZF7 mice required T cells and MyD88, was exquisitely sensitive to tumor necrosis factor and interleukin-17A, and persisted in germ-free conditions. A20ZF7 cells exhibited prolonged IκB kinase activity that drove exaggerated transcription of late-phase nuclear factor-κB response genes in vitro and in prediseased mouse paws in vivo. In addition, mice expressing double-mutant A20 proteins in A20's ZF4 and ZF7 motifs died perinatally with multi-organ inflammation. Therefore, A20's ZF4 and ZF7 motifs synergistically prevent inflammatory disease in a non-catalytic manner.


Assuntos
Artrite Psoriásica/metabolismo , Inflamação/metabolismo , Ubiquitina/metabolismo , Animais , Células Cultivadas , Interleucina-17 , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , NF-kappa B/metabolismo , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação/fisiologia , Dedos de Zinco/fisiologia
5.
Proc Natl Acad Sci U S A ; 116(22): 10911-10916, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31097581

RESUMO

Vitamin A is a dietary component that is essential for the development of intestinal immunity. Vitamin A is absorbed and converted to its bioactive derivatives retinol and retinoic acid by the intestinal epithelium, yet little is known about how epithelial cells regulate vitamin A-dependent intestinal immunity. Here we show that epithelial cell expression of the transcription factor retinoic acid receptor ß (RARß) is essential for vitamin A-dependent intestinal immunity. Epithelial RARß activated vitamin A-dependent expression of serum amyloid A (SAA) proteins by binding directly to Saa promoters. In accordance with the known role of SAAs in regulating Th17 cell effector function, epithelial RARß promoted IL-17 production by intestinal Th17 cells. More broadly, epithelial RARß was required for the development of key vitamin A-dependent adaptive immune responses, including CD4+ T-cell homing to the intestine and the development of IgA-producing intestinal B cells. Our findings provide insight into how the intestinal epithelium senses dietary vitamin A status to regulate adaptive immunity, and highlight the role of epithelial cells in regulating intestinal immunity in response to diet.


Assuntos
Imunidade nas Mucosas/fisiologia , Mucosa Intestinal/metabolismo , Receptores do Ácido Retinoico/metabolismo , Proteína Amiloide A Sérica/metabolismo , Vitamina A/metabolismo , Animais , Linhagem Celular , Microbioma Gastrointestinal/fisiologia , Células Hep G2 , Humanos , Camundongos , Receptores do Ácido Retinoico/genética , Proteína Amiloide A Sérica/genética
6.
Magn Reson Med ; 81(4): 2808-2822, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30426583

RESUMO

PURPOSE: Managing local specific absorption rate (SAR) in parallel transmission requires ensuring that the peak SAR over a large number of voxels (> 105 ) is below the regulatory limit. The safety risk to the patient depends on cumulative (not instantaneous) SAR thus making a joint design of all RF pulses in a sequence desirable. We propose the Iterative Minimization Procedure with Uncompressed Local SAR Estimate (IMPULSE), an efficient optimization formulation and algorithm that can handle uncompressed SAR matrices and optimize pulses for all slices jointly within a practical time frame. THEORY AND METHODS: IMPULSE optimizes parallel transmit pulses for small-tip-angle slice selective excitation to minimize a single cost function incorporating multiple quantities (local SAR, global SAR, and per-channel power) averaged over the entire multislice scan subject to a strict constraint on excitation accuracy. Pulses for an 8-channel 7T head coil were designed with IMPULSE and compared with pulses designed using generic optimization algorithms and VOPs to assess the computation time and SAR performance benefits. RESULTS: IMPULSE achieves lower SAR and shorter computation time compared with a VOP approach. Compared with the generic sequential quadratic programming algorithm, computation time is reduced by a factor of 5-6 by using IMPULSE. Using as many as 6 million local SAR terms, up to 120 slices can be designed jointly with IMPULSE within 45 s. CONCLUSIONS: IMPULSE can handle significantly larger number of SAR matrices and slices than conventional optimization algorithms, enabling the use of uncompressed or partially compressed SAR matrices to design pulses for a multislice scan in a practical time frame.


Assuntos
Encéfalo/diagnóstico por imagem , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Ondas de Rádio , Algoritmos , Simulação por Computador , Humanos , Modelos Teóricos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Risco , Sensibilidade e Especificidade , Software
7.
Science ; 357(6355): 1047-1052, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28751470

RESUMO

Intestinal Paneth cells limit bacterial invasion by secreting antimicrobial proteins, including lysozyme. However, invasive pathogens can disrupt the Golgi apparatus, interfering with secretion and compromising intestinal antimicrobial defense. Here we show that during bacterial infection, lysozyme is rerouted via secretory autophagy, an autophagy-based alternative secretion pathway. Secretory autophagy was triggered in Paneth cells by bacteria-induced endoplasmic reticulum (ER) stress, required extrinsic signals from innate lymphoid cells, and limited bacterial dissemination. Secretory autophagy was disrupted in Paneth cells of mice harboring a mutation in autophagy gene Atg16L1 that confers increased risk for Crohn's disease in humans. Our findings identify a role for secretory autophagy in intestinal defense and suggest why Crohn's disease is associated with genetic mutations that affect both the ER stress response and autophagy.


Assuntos
Estresse do Retículo Endoplasmático/imunologia , Muramidase/metabolismo , Celulas de Paneth/imunologia , Celulas de Paneth/metabolismo , Infecções por Salmonella/imunologia , Salmonella enterica , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Doença de Crohn/genética , Doença de Crohn/imunologia , Doença de Crohn/microbiologia , Estresse do Retículo Endoplasmático/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Celulas de Paneth/enzimologia , Infecções por Salmonella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...